Departamento de Matemáticas Facultad de Ciencias Naturales

Recinto de Río Piedras

${\rm MATE}\atop{\rm 3152}$

(2) (10 pts.)

Apellidos:		Nombre:	
No. de estudiante:		Profesor: V. Keyantuo# de sección: 002	
Examen IV	3 de mayo de 2012	# de seccion: 002	
Para obtener crédi	ito muestre todo su tr	abajo. Explique claramente su contestación.	
		5	
(1) (5 pts) Find th	e Taylor series of the fund	etion: $f(x) = \frac{5}{x+3}$ about the point $c = 5$.	
		$x \mid 0$	

(a) (8 pts.) Find the Taylor series of the function: $f(x) = \frac{x^2 + 1}{x + 3}$ about the point c = 5.

(Hint. Start with a partial fraction decomposition)

- (b) (2 pts.) Find the radius of convergence of the power series obtained above.
- (3) (5 pts.) Find an equation in polar coordinates for the line passing through A(5,5) and having slope m=-1.

- (4) (10 pts.)
 - (a) (8 pts) Obtain the MacLaurin series for $f(x) = \sqrt{9-2x}$

(b) (2 pts.) Find the radius of convergence of the power series obtained above.

(5) (10 pts.) Obtain an equation in polar coordinates for the circle with equation $(x-3)^2+y^2=9$. (Hint. Observe that it passes through the origin.)

(6) (4 pts) A parabola has directrix x = 10 and focus at (0,0). Obtain an equation in polar coordinates for the parabola.

(7) (4 pts) A parabola has directrix y = 10 and focus at (0,0). Obtain an equation in polar coordinates for the parabola.

(8) (8 pts) An ellipse has eccentricity $e=\frac{1}{\pi}$ directrix y=16 and a focus at the origin. Obtain an equation in polar coordinates.

(9) (6 pts) An ellipse has eccentricity $e=\frac{1}{\pi}$ directrix x=-16 and a focus at the origin. Obtain an equation in Cartesian coordinates.

- (10) (30 pts) Let $f(x) = \frac{x^2}{\sqrt{4+x}}$ (a) (2 pts) Find the domain of definition of f.
 - (b) (2 pts) Compute f'(x)

(c) (2 pts) Compute f''(x)

(d) (2 pts) Compute f'''(x)

(e) (5 pts) Taylor series about c=2 and the corresponding radius of convergence.

(f) (8 pts) Suppose $a \in D_f$, $a \neq -4$. Find the Taylor series of f about x = a.

- (g) (2 pts.) Find the radius of convergence of the power series (about x = a) obtained above.
- (h) (2 pts) Use the above results to obtain $f^{(6)}(12)$.

(i) (5 pts) Let $k \in \mathbb{N}$, and a be as above. Use the above results to obtain $f^{(k)}(a)$.

(11) (6 pts) Find the power series for $f(x) = \tan^{-1}(5x)$ about x = 0 (MacLaurin series).

(12) (6 pts) Find the power series for $f(x) = \sin(\pi x)$ about x = 0.

(13) (6 pts) Obtain the Taylor series for $f(x) = 5^x$ about $x = 2\ln(5)$. (Hint. Use the definition of the exponential function with base a, a > 0.)